
Proceedings of the ISCA 15th International Conference on Computers and Their Applications (CATA-

2000). New Orleans, Louisiana, USA March 29 – 31, 2000.

A PERF Solution For Distributed Query Optimization

Ramzi A. Haraty and Roula Fany

Lebanese American University

P.O. Box 13-5053

Beirut, Lebanon
Abstract

Query optimization techniques aim to

minimize the cost of transferring data across

networks. Many techniques and algorithms

have been proposed to optimize queries. One

of the algorithms is the W algorithm using

semi-joins. Nowadays, a new technique called

PERF seems to bring some improvement over

semi-joins [2]. PERF joins are two-way semi-

joins using a bit vector as their backward

phase. Our research encompasses applying

PERF joins to the W algorithm. Programs were

designed to implement both the original and

the enhanced algorithms. Several experiments

were conducted and the results showed a very

considerable enhancement obtained by

applying the PERF concept.

Keywords

Query Optimization, Semi-Joins, and PERF

Joins.

1 – Introduction

 Distributed query processing is the process

of retrieving data from different sites.

Accessing data from different sites involves

transmission via communication links that

creates delays. The basic challenge is to design

and develop efficient query processing

techniques and strategies to minimize the

communication cost. This is the main purpose

of query optimization which estimates the cost

of alternative query plans in order to choose

the best plan to answer quickly and efficiently,

complex and expensive queries [3].

 The query optimization problem was

addressed many times, from different

perspectives, and a lot of work has been done.

Proposed algorithms and techniques can be

categorized in two main approaches:

1- Minimize the cost of data transferred

across the network by reducing the

amount of transmitted information,

and

2- Minimize the response time of the

query by using parallel processing.

 In this paper, we will mainly focus on the

first approach. One of the most important

algorithms suggested for query optimization

with minimum cost was algorithm GENERAL

(total cost) presented by Apers, Hevner and

Yao in 1983 [4]. The advent of AHY was a

revolution in query optimization domain

because it introduced semi-joins as reducers in

the query optimization process.

 In 1995, Todd Bealor from Windsor

University, Canada presented a new algorithm

called W algorithm as an enhancement over

AHY. At the same time, a new technique

called PERF (Partially Encoded Record Filter)

was presented by Kenneth Ross [2]. This

method adds to semi-joins another dimension,

which is the backward phase that will be used

to eliminate unnecessary redundant semi-joins

by using bit vectors.

 In this paper we present an improvement

over W algorithm using PERF joins applied to

W. This paper is organized as follows: Section

2 presents the W algorithm. Section 3

discusses our contribution in the PERFW

algorithm. Section 4 presents the experimental

results. And section 5 concludes the paper.

2 - The W Algorithm

 The main aim of this algorithm is to

minimize total time by using reducers in order

to eliminate unnecessary data. This algorithm

is characterized by two distinct phases:

Phase 1. Semi-join schedules for constructing

each reducer are formed using a cost/benefit

analysis based on estimated attribute selectivity

and sizes of partial results.

Phase 2. Schedule is executed.

Algorithm W works as follows:

1. Establish schedules for the construction of

reducers. For each join attribute j construct

schedule for the reducer d*mj. It should be

noted that at this level, each schedule is

considered independently. Hence, no semi-

joins are executed yet. This is achieved in two

phases:

Phase 1. Sort attributes by increasing size such

that: S(daj)  S (dbj)  - - -  S(dmj).

Proceedings of the ISCA 15th International Conference on Computers and Their Applications (CATA-

2000). New Orleans, Louisiana, USA March 29 – 31, 2000.

Phase 2. Evaluate semi-joins in order

beginning with daj dbj. Append semi-join

to schedule if:

a. It is profitable and marginally profitable.

P(daj dbj) > 0 and MP (daj dbj) > 0

or,

b. It is gainful but not profitable. Hence, P(daj

 dbj) < 0 but G (daj dbj) > 0.

If semi-join is appended then d*bj dcj is

evaluated next, else d*aj dcj is considered.

Repeat this process until all semi-joins in the

sequence are evaluated. The last attribute in the

sequence will be called the reducer.

2. Examine the effects of reducers. Consider

the reduction effects of the reducers’ all-

applicable relations by:

a. Sorting reducers from smallest to largest.

b. Estimating the cost and benefit of a semi-

join with each admissible relation and for

each reducer. Profitable semi-joins are

appended to the schedule.

3. Review of unused semi-joins. For non-

profitable reducers, reexamine the possibility

of having profitable semi-joins for that

particular join attribute. This phase is done

using the following sub-steps:

a. Sort attributes by increasing size.

b. Evaluate each semi-join and append

profitable semi-joins to the final schedule.

Note that marginal profit is not considered in

this step.

4. Execute the schedule. During this phase,

reducers are constructed and shipped to

designated sites to reduce the corresponding

relations. Then, reduced relations are shipped

to the assembly site.

 This heuristic is simple and efficient. It

aims to construct in the cheapest possible way,

reducers who are highly selective. Those

reducers will be then used to eliminate tuples

from participating relations prior to shipment

to the query site (assembly site).

 It should be noted that algorithm W

ameliorates the choice of join attributes and

their order but does not eliminate redundant

transmissions because schedules are also

treated separately.

3 - The PERFW Algorithm

 When applying PERF to the W algorithm,

the same concept is preserved but semi-joins

are replaced by PERF joins. Our enhancement

consisted of the following two phases that were

added to the schedule construction:

a. Build a PERF list where PERF Ri Ri+1 j is set

to 1 when transmission was done from Ri to

Ri+1 on join attribute j.

b. When calculating transmission cost,

 If PERF Ri Ri + 1 j = 1 then

 Cost = 0

 Else

 Cost = C0 + C1 * bik + (bik * ?(i + 1) k)/8

where C0 + C1 * bik is the linear function of

transmission cost that is equal to the fixed cost

per byte transmitted (C1) multiplied by the size

in bytes of the join attribute projected. This is

the usual cost of a semi-join known as the

forward cost, and (bik * ?(i + 1) k)/8 is the

backward cost that is the cost of transmitting

back to Ri the bit vector consisting of only

matching values of the corresponding attribute.

For simplicity of this equation, we are

considering attribute k of width 1 byte.

 As it can be seen, the PERF version of W

algorithm does not eliminate redundant

transmissions from the schedules but it makes

their cost zero when they occur. This can be

made possible by adding a little overhead on

the transmission cost, which is the backward

cost. Using this fact, if a transmission was done

from site A to site B using a join attribute j,

then every other transmission from A to B

using j will have a zero cost and every

transmission from B to A using j will have also

a zero cost. From this point, a PERF join can

be seen as a non-redundant symmetric

function. This fundamental property allowed us

to enhance over the W algorithm.

4 - Experimental Results

 Different scenarios were conceived in order

to evaluate the performance of the different

algorithms and for each scenario programs

were run 1500 times. Different kinds of results

Proceedings of the ISCA 15th International Conference on Computers and Their Applications (CATA-

2000). New Orleans, Louisiana, USA March 29 – 31, 2000.

are collected including the comparison of all

algorithms versus the unoptimized method.

 Note that all programs were developed

using Visual C++ 4.0 under Windows 95.

Experiments were conducted on a Pentium V

PC with 64 MB RAM.

 In the first test scenario the attribute width

is taken as 1 byte for all attributes.

TYPE W PERFW PERFW

/W

2-2 29.79 33.24 3.45

2-3 43.88 47.98 4.11

2-4 56.18 60.63 4.45

3-2 30.63 32.64 2.04

3-3 41.67 44.35 2.69

3-4 52.36 55.32 2.96

4-2 41.45 42.31 0.86

4-3 47.14 48.64 1.50

4-4 55.35 57.12 1.77

5-2 51.74 51.99 0.25

5-3 54.63 55.37 0.74

5-4 60.08 61.14 1.05

TOT: 47.07 49.23 2.15

 Graphically, the results are represented as

follows: comparing PERFW to W: we notice

that PERFW outperforms W in all cases.

0

20

40

60

80

2
-2

2
-4

3
-3

4
-2

4
-4

5
-3

 In the second test scenario the attribute

width is taken as 5 bytes for all attributes.

TYPE W PERFW PERFW

/W

2-2 27.56 31.12 3.56

2-3 42.31 46.41 4.10

2-4 55.25 59.74 4.49

3-2 28.62 30.74 2.12

3-3 40.63 43.27 2.64

3-4 52.15 55.10 2.94

4-2 40.35 41.17 0.81

4-3 45.54 47.13 1.59

4-4 54.95 56.80 1.385

5-2 50.85 51.16 0.31

5-3 55.11 55.87 0.76

5-4 61.46 62.48 1.02

TOT: 46.23 48.41 2.18

 Graphically, the results are represented as

follows: comparing PERFW to W: we notice

that PERFW outperforms W in all cases.

0

20

40

60

80

2
-2

2
-4

3
-3

4
-2

4
-4

5
-3

 In the third test scenario the attribute width

is taken as 50 bytes for all attributes.

TYPE W PERFW PERFW

/W

2-2 28.24 31.81 3.57

2-3 42.73 46.75 4.02

2-4 57.23 61.60 4.37

Proceedings of the ISCA 15th International Conference on Computers and Their Applications (CATA-

2000). New Orleans, Louisiana, USA March 29 – 31, 2000.

3-2 28.78 30.85 2.07

3-3 41.67 44.42 2.75

3-4 52.03 54.94 2.92

4-2 40.87 41.68 0.82

4-3 46.10 47.56 1.45

4-4 54.76 56.61 1.85

5-2 51.48 51.76 0.28

5-3 54.42 55.23 0.81

5-4 60.96 61.96 1.00

TOT: 46.60 48.76 2.16

 Graphically, the results are represented as

follows: comparing PERFW to W: we notice

also that PERFW outperforms W in all cases.

0

20

40

60

80

2-

2

2-

3

2-

4

3-

2

3-

3

3-

4

4-

2

4-

3

4-

4

5-

2

5-

3

5-

4

 We used many different scenarios in order

to study the performance of the mentioned

algorithms from different perspectives. For

each scenario, we compared the performance

of the algorithms with respect to each other.

Using different scenarios we studied better the

behavior of all algorithms under a variety of

circumstances. We could be able to note that

PERFW has the best performance for a field

width of 50 bytes. This result was expected

because of the overhead added by PERF to the

backward phase. Remember that PERF

consists of returning back to the original site a

bit vector representing the matching tuples.

This overhead is somehow more considerable

when the original field width is <= 1 byte

because it might be more profitable sometimes

not to send back this data. But when having a

width of 50 bytes, the backward cost becomes

negligible as compared to the forward cost.

 Finally, we can conclude that the results of

our experiments were up to the expectations

and proved the power of PERF joins and their

advantage in optimizing the total time of

distributed queries.

5 – Conclusion

 In this paper, a PERF join algorithm has

been presented as our contribution to the query

optimization problem using semi-joins. We

have fully exposed both concepts of semi-joins

and PERF joins and then, we have taken an

optimization algorithm using semi-joins (W)

and enhanced it by applying PERF joins

(PERFW).

6 – References

[1] Todd Bealor, “Semi-join Strategies

For Total Cost Minimization In

Distributed Query Processing”,

Master Thesis, University of Windsor,

Canada, 1995.

[2] Zhe Li, K.A. Ross, “PERF Join: An

Alternative to Two-Way Semi-Join

and Bloomjoin”, Columbia

University, New York, 1995.

[3] D. Barbara, W. DuMouchel, C.

Faloustos, P.J. Haas, J.M. Hellerstein,

Y. Iaonnidies, H.V. Jagadish, T.

Johnson, R. Ng, V. Poosala, K.A.

Ross and K.C. Sevcik, “The New

Jersey Data Reduction Report”,

Bulletin Of The Technical Committee

On Data Engineering, Pages: 3-45,

December 1997.

[4] Peter M.G. Apers, Alan R. Hevner

and S. Bing Yao, “Optimization

Algorithms For Distributed Queries”,

IEEE Transactions On Software

Engineering, Vol. Se-9, No.1, Pages:

57-68, January 1983.

[5] Roula Fany, “PERF Solutions for

Distributed Query Optimization”,

Masters Thesis, Lebanese American

University, September 1999.

